GENERAL DYNAMICAL MODEL APPROACH FOR GLUCONIC ACID PRIDUCTION

Maya N. Ignatova

Bulgarian Academy of Sciences

Craiova, October, 2024

MODES OF CULTIVATION

INTERCONNECTION SCHEME

BATCH EXPERIMENTAL DATA OF YEAST FERMENTATION

Simultaneous saccharification and fermentation of starch to ethanol (SSFSE) – Experimental data

MODEL-BASED CONTROL

REACTION SCHEME FOR GLUCONIC ACID PRODUCTION

GENERAL DYNAMICAL MODEL DERIVATION

Bastin, G. and D. Dochain (1990). *On-line estimation and adaptive control of bioreactors*, Amsterdam, Oxford, New York, Tokyo: Elsevier.

Dochain, D. and P. A. Vanrolleghem (2001). *Dynamical Modelling and Estimation in Wastewater Treatment Processes*, IWA Publishing

GENERAL DYNAMICAL MODEL

GD MODEL TRANSFORMATION

$$\begin{split} \dot{\xi}_{a} &= K_{a}\varphi - D\xi_{a} + F_{a} \qquad \text{measured} \\ \dot{\xi}_{b} &= K_{b}\varphi - D\xi_{b} + F_{b} \qquad \text{unmeasured} \\ A_{0}\xi_{a} + \xi_{b} \\ \text{te variable State partition} \\ &= K_{a}\varphi - D\xi_{a} + F_{a} \\ &= A_{0}F_{a} - D\xi_{b} + F_{b} \end{split}$$

Auxiliary stat

Z =

· E

 $\overset{\cdot}{Z}$

BIOMASS AND GLUCONIC ACID OBSERVERS

OBSERVERS CROSS VALIDATION

Adaptive linearizing control design for continuous process

Continuous Control of Glucose concentration

$$D = \frac{-\lambda(G^* - G) - X_e G\theta_2 - GO_2\theta_3}{G - G_{in}}$$

Fed-Batch Control of Glucose concentration

$$F = \frac{G_{in}(-\lambda(G^* - G) - X_e G\theta_2 - GO_2\theta_3)}{G - G_{in}}$$

dV/dt=F

Continous Control of Gluconic Acid Concentration

Fed-Batch Control of Gluconic Acid Concentration

$$F = \frac{V(\lambda(GA^* - GA_e) - GO_2\theta_5)}{GA_e}$$

$$\frac{dV/dt = F$$

ACKNOWLEDGEMENTS

This research was funded by the National Scientific Fund of Bulgaria, Grant $K\Pi$ -06-H32/3 "Interactive System for Education in Modelling and Control of Bioprocesses (InSEMCoBio)".

Thanks for your attention