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v" Derivation and tuning of the general software sensor of the full kinetics of biotechnological processes
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Development of a Interactive System for Education in Modelling and
Control of Biotehnological Processes (INSEMCoBi0)

1. Modules and functions of INSEMCoBio
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Model-based adaptive control algorithms of bioreactors — a brief review

1. General Dynamical Model Approach

Bastin, G., D. Dochain. On-line estimation and adaptive control of bioreactors. Amsterdam, Oxford,
New York, Tokyo: Elsevier, 1990, p.378.
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&- component i in the liquid phase in the reactor;

k - yield coefficient: (+) if the component is a product ; (-) if the component is a substrate;
@ - reaction rate j;

F - the mass feed rate in the reactor of the component &i ;

Q - the rate of mass outflow of the component &i from the reactor in gaseous form.



1. General Dynamical Model Approach

Process kinetics Transport dynamics
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General Dynamical Model

Model-based adaptive control algorithms of bioreactors — a brief review

2. Developments of General Dynamical Model Approach
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Classic GDM approach and the proposed developments — a comparison.



Model-based adaptive control algorithms of bioreactors — a brief review

2. Developments of General Dynamical Model Approach

v New formalization of biotechnological processes’ kinetics
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Partially known Unknown

K — constant yield coefficient matrix #(t) — unknown time-varying parameters vector
@(t) — reaction rate vector



2. Developments of General Dynamical Model Approach
v" Derivation and tuning of the general software sensor of the full kinetics of biotechnological processes
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Theorem: Under admissible limitations of the kinetics and measurements noises, estimation errors are are
asymptotically bounded for all t as follows:
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Model-based adaptive control algorithms of bioreactors — a brief review

2. Developments of General Dynamical Model Approach
v" Derivation and tuning of the general software sensor of the full kinetics of biotechnological processes
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m, and m, are upper bounds of kinetics derivative and measurement noise




2. Developments of General Dynamical Model Approach
v General algorithm for fully adaptive linearizing control with software sensors
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y=£&. -vectory isassumed to be the vector & of concentrations of the controlled measured substrates

where A € R®[1/h] is a diagonal matrix containing the control design parameters, &, e R [g/l] is a vector of the

concentrations of the controlled feeding substrates (c, indicates their number);

K € RN [9/g] represents the yield

coefficient matrix, related to the kinetics of &, (n indicates the number of the reaction rates), ¢, € R". ;! [g/Ih] stands for
the reaction rates vector and F_ € R®<! [g/lh] is the mass feed rate of the substrate & in the bioreactor.



2. Developments of General Dynamical Model Approach
v" General algorithm for fully adaptive linearizing control with software sensors

Theorem: Under assumptions A1 — A9, the estimation errors of y and ¢, are bounded for all t
and asymptotically bounded as follows:
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Model-based adaptive control algorithms of bioreactors — a brief review
3. Applications of proposed theoretical solutions

Three control strategies:
v" fully adaptive control of the main substrate
v’ partially adaptive control of intermediate metabolite recognition
v’ stabilization of the desired physiological state
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3. Applications of proposed theoretical solution
v" fully adaptive control of the main substrate

Fully adaptive control of main substrate

Case studies:
g:{- _fm _ ED _ f 1.Control of gluconic acid production
Nonlinear ? Nonlinear m by Aspergillus niger
Controller Process 2.Control of Alpha-amylase
production by Bacillus subtilis
‘ ¢ Software L,
SEensor

: The process kinetics, @ (1), is presented as a fully unknown time-varying parameter.
Optimal SS tuning is done. The SS included in the control law makes it fully adaptive in terms of Kinetics.

Limitation: It is mainly applied for the stabilization of the limiting substrate




3. Applications of proposed theoretical solution
v’ partially adaptive control of intermediate metabolite recognition

A — (pl — CDZ
D, Intermediate metabolite production rate

D, Intermediate metabolite consumption rate



3. Applications of proposed theoretical solution
v' partially adaptive control of intermediate metabolite recognition

Partially adaptive control of an intermediate metabolite
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control

Case studies:

1. Impulse control of simultaneous saccharification and fermentation of starch to ethanol (SSFSE)
2. Impulse Adaptive Control of Biopolymer Production by Mixed Culture

Advantages: The control stabilizes an intermediate metabolite at an optimal value using a
marker as the difference between consumption and production of that metabolite

Limitation: The SS included in the control law makes it partially adaptive in terms of kinetics.



3. Applications of proposed theoretical solution
v’ stabilization of the desired physiological state

Recognition and stabilization of desired physiological state

ED Process model
Controller — Process [=>
r 2 Submodel 1
‘ | &m
Marker = | Submodel 2
1 Submodel 3

Byq1, Ryo, Rys — Software sensor — |

Advantages: Monitoring of physiological states in multi-rate processes by a marker of the kinetics of
an intermediate metabolite. Recognition and stabilization of the desired physiological state.

Limitation: The SS included in the control law makes it partially adaptive in terms of kinetics.



Model-based adaptive control algorithms of bioreactors — a brief review
3. Applications of proposed theoretical solution
v’ stabilization of the desired physiological state
Case study: fed-batch fermentation of E. coli

boundary conditions for changing the regime of acetate
production depending on the presence of glucose

Rac < 0, G # 0 oxidative growth on acetate and glucose
Rac < 0, G = 0 oxidative growth on acetate

boundary conditions for changing the regime of
glucose from oxidative to oxidative-fermentative:

Rac = 0, G # 0 oxidative growth on glucose

Rac > 0, G # 0 oxidative-fermentative growth on glucose
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of Rac

Sm

—_—
[ Y (- s P
SS of acetate| |SS of omdam-'q X3
consumption=] growth rate » S%
| rate ) | oOnacetate J A DX 2
AT th #y I
SS of acetate] [ SS of | A
- i fermentative N5 &
production [ - SS of oxidative| Rx1 | p5 | 2
e ) \ & growth rate === fs
on glucose \

Scheme of software sensors designed for monitoring of the physiological states
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(INSEMCoBio)

Development of a Interactive System for Education in Modelling and Control of Biotehnological Processes

Simulations
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4 Identification Panel
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Continous Control of
Glucose concentration
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