

Bulgarian Academy of Sciences INSTITUTE OF ROBOTICS

България, София 1113, ПК 79, ул. "Акад. Г.Бончев", Бл.2, Тел.(+359 2) 8732 614, (+359 2) 8723 571, Факс: (+359 2) 8703361 Почетен член на "Съвета на Европейската научна и културна общност"

Contemporary methods for modeling and adaptive control of bioprocesses embedded in the software system InSEMCoBio

Velislava Lyubenova, Prof. DSc

24 October 2024 Craiova, Roumania

Project working team

- 1. Velislava Lyubenova, Prof. DSc project leader
- 2. Maya Ignatova, Prof. Dr.
- 3. Olympiya Roeva, Prof. Dr.
- 4. Dafina Zoteva, Assos. Prof. Dr.
- 5. Vesela Shopska, Assos. Prof. Dr.
- 6. Anastasya Zlatkova, Chief assistant, Dr.
- 7. Ivan Krastev, specialist

1. General Dynamical Model Approach

2. Developments of General Dynamical Model Approach

- ✓ New formalization of biotechnological processes' kinetics
- \checkmark Derivation and tuning of the general software sensor of the full kinetics of biotechnological processes
- \checkmark General algorithm for fully adaptive linearizing control with software sensors
- 3. Applications of proposed theoretical solutions

Three control strategies:

- \checkmark fully adaptive control of the main substrate
- ✓ partially adaptive control of intermediate metabolite
- \checkmark stabilization of the desired physiological state
- 4. Disscusion

Development of a Interactive System for Education in Modelling and Control of Biotehnological Processes (InSEMCoBio)

- 1. Modules and functions of InSEMCoBio
- 2. Demonstration of results for concrete processes

Scheme of the interactive system InSEMCoBio

1. General Dynamical Model Approach

Bastin, G., D. Dochain. On-line estimation and adaptive control of bioreactors. Amsterdam, Oxford, New York, Tokyo: Elsevier, 1990, p.378.

$$S + O_2 \xrightarrow{\varphi_1} X$$

$$S \xrightarrow{\varphi_2} X + E$$

$$E + O_2 \xrightarrow{\varphi_3} X$$

$$\frac{d\xi}{dt} = \sum_{j \approx i} (\pm) k_{ij} \varphi_j - D\xi + F_i - Q_i$$

- ξ component *i* in the liquid phase in the reactor;
- *k* yield coefficient: (+) if the component is a *product* ; (-) if the component is a *substrate*;
- φ reaction rate *j*;
- *F* the mass feed rate in the reactor of the component ξ_i ;
- Q the rate of mass outflow of the component ξ_i from the reactor in gaseous form.

1. General Dynamical Model Approach

Scheme of linearizing control

2. Developments of General Dynamical Model Approach

Classic GDM approach and the proposed developments – a comparison.

- 2. Developments of General Dynamical Model Approach
 - ✓ New formalization of biotechnological processes' kinetics

 \mathbf{K} – constant yield coefficient matrix $\boldsymbol{\varphi}(t)$ – reaction rate vector

 $\phi(t)$ – unknown time-varying parameters vector

2. Developments of General Dynamical Model Approach

✓ Derivation and tuning of the general software sensor of the full kinetics of biotechnological processes

Inputs
$$\xi_m$$

$$\frac{d\hat{\xi}_m}{dt} = \hat{\phi}(t) - D\xi_m + F_m - Q_m + \Omega(\xi_m - \hat{\xi}_m)$$

$$\frac{d\hat{\phi}}{dt} = \Gamma(\xi_m - \hat{\xi}_m)$$
Outputs
Kinetics ϕ

 Ω and $\Gamma\!\in\!\mathbb{R}_{\text{nmxnm}}$ - matrices with tuning estimator parameters

Theorem: Under admissible limitations of the kinetics and measurements noises, *estimation errors are* are asymptotically bounded for all *t* as follows:

$$\begin{split} \limsup_{t \to \infty} \left| \widetilde{\xi}_{I}(t) \right| &\leq \frac{2m_{21}\delta\beta_{11}}{\sqrt{\omega_{1}^{2} - 4\gamma_{1}}} + \frac{\beta_{21}}{\gamma_{1}} \\ \limsup_{t \to \infty} \left| \widetilde{\phi}_{1}(t) \right| &\leq m_{21}\beta_{11} + \omega_{1}\frac{\beta_{21}}{\gamma_{1}} \end{split}$$

where
$$\beta_{11} = D + \omega_1$$
 and $\beta_{21} = m_{21}\gamma_1 + m_{11}$ $\delta = \left(\frac{\lambda_1}{\lambda_2}\right)^{\lambda_1/\lambda_1 - \lambda_2} - \left(\frac{\lambda_1}{\lambda_2}\right)^{\lambda_2/\lambda_1 - \lambda_2}$

2. Developments of General Dynamical Model Approach

✓ Derivation and tuning of the general software sensor of the full kinetics of biotechnological processes

 m_1 and m_2 are upper bounds of kinetics derivative and measurement noise

- 2. Developments of General Dynamical Model Approach
 - \checkmark General algorithm for fully adaptive linearizing control with software sensors

$$d\hat{y}/dt = \hat{\phi} - Dy + F_{cs} + \Omega(y - \hat{y})$$

$$d\hat{\phi}/dt = \Gamma(y - \hat{y})$$

$$F_{cs} = \Lambda(y^* - y) - \hat{\phi} + Dy + dy^*/dt$$

Outputs

$$F_{cs}$$

$$d\xi_{cs}/dt = \mathbf{K}_{cs}\varphi_{cs}(\xi) - D\xi_{cs} + F_{cs}$$

 $y = \xi_{cs}$ - vector y is assumed to be the vector ξ_{cs} of concentrations of the controlled measured substrates

where $\Lambda \in \mathbb{R}^{cs \times cs}[1/h]$ is a diagonal matrix containing the control design parameters, $\xi_{cs} \in \mathbb{R}^{cs \times 1}$ [g/l] is a vector of the concentrations of the controlled feeding substrates (c_s indicates their number); $\mathbf{K}_{cs} \in \mathbb{R}^{cs \times n}_{cs}$ [g/g] represents the yield coefficient matrix, related to the kinetics of ξ_{cs} (n_{cs} indicates the number of the reaction rates), $\varphi_{cs} \in \mathbb{R}^{n_{cs} \times 1}$ [g/lh] stands for the reaction rates vector and $F_{cs} \in \mathbb{R}^{cs \times 1}$ [g/lh] is the mass feed rate of the substrate ξ_{cs} in the bioreactor.

2. Developments of General Dynamical Model Approach

✓ General algorithm for fully adaptive linearizing control with software sensors

Theorem: Under assumptions A1 – A9, the estimation errors of y and ϕ_1 are bounded for all t and asymptotically bounded as follows:

$$\lim_{t \to \infty} \sup |\tilde{y}_1(t)| \leq \frac{2m_{21}\delta\beta_{11}}{\sqrt{\omega_1^2 - 4\gamma_1}} + \frac{\beta_{21}}{\gamma_1}$$
$$\lim_{t \to \infty} \sup |\tilde{\phi}_1(t)| \leq m_{21}\beta_{11} + \omega_1\frac{\beta_{21}}{\gamma_1}$$

and then the error between the state (y) and the reference is bounded as follows:

$$\lim_{t \to \infty} \sup |y - y^*| \leq \frac{m_{21}\beta_{11} + \omega_1 \frac{\beta_{21}}{\gamma_1} + (D + \gamma_1)m_{21}}{\gamma_1}$$

 $\beta_{11} = D + \omega_1$ and $\beta_{21} = m_{21} \gamma_1 + m_{11}$ $\delta = \left(\frac{\lambda_1}{\lambda_2}\right)^{\lambda_1/(\lambda_1 - \lambda_2)} - \left(\frac{\lambda_1}{\lambda_2}\right)^{\lambda_2/(\lambda_1 - \lambda_2)}$

3. Applications of proposed theoretical solutions

Three control strategies:

- $\checkmark\,$ fully adaptive control of the main substrate
- $\checkmark\,$ partially adaptive control of intermediate metabolite recognition
- $\checkmark\,$ stabilization of the desired physiological state

- 3. Applications of proposed theoretical solution
 - \checkmark fully adaptive control of the main substrate

Fully adaptive control of main substrate

Case studies:

1.Control of gluconic acid production by *Aspergillus niger*

2.Control of Alpha-amylase production by *Bacillus subtilis*

<u>Advantages</u>: The process kinetics, $\phi(t)$, is presented as a fully unknown time-varying parameter. Optimal SS tuning is done. The SS included in the control law makes it fully adaptive in terms of kinetics.

Limitation: It is mainly applied for the stabilization of the limiting substrate

- 3. Applications of proposed theoretical solution
 - \checkmark partially adaptive control of intermediate metabolite recognition

Control Marker

$$\Delta = \widehat{\Phi}_1 - \widehat{\Phi}_2$$

 $\widehat{\Phi}_1$ Intermediate metabolite production rate

- 3. Applications of proposed theoretical solution
 - \checkmark partially adaptive control of intermediate metabolite recognition

Partially adaptive control of an intermediate metabolite

Case studies:

1. Impulse control of simultaneous saccharification and fermentation of starch to ethanol (SSFSE)

2. Impulse Adaptive Control of Biopolymer Production by Mixed Culture

Advantages: The control stabilizes an intermediate metabolite at an optimal value using a marker as the difference between consumption and production of that metabolite *Limitation:* The SS included in the control law makes it partially adaptive in terms of kinetics.

- 3. Applications of proposed theoretical solution
 - \checkmark stabilization of the desired physiological state

Recognition and stabilization of desired physiological state

Advantages: Monitoring of physiological states in multi-rate processes by a marker of the kinetics of an intermediate metabolite. Recognition and stabilization of the desired physiological state.

Limitation: The SS included in the control law makes it partially adaptive in terms of kinetics.

- 3. Applications of proposed theoretical solution
 - $\checkmark\,$ stabilization of the desired physiological state

Case study: fed-batch fermentation of *E. coli*

boundary conditions for changing the regime of glucose from oxidative to oxidative-fermentative:

Rac = 0, $G \neq 0$ oxidative growth on glucose *Rac* > 0, $G \neq 0$ oxidative-fermentative growth on glucose boundary conditions for changing the regime of acetate production depending on the presence of glucose

Rac < 0, $G \neq 0$ oxidative growth on acetate and glucose

Rac < 0, G = 0 oxidative growth on acetate

Scheme of software sensors designed for monitoring of the physiological states

$$F = (W(-\Lambda_1(G^* - G_m) + k_1\hat{R}_{X1} + k_2\hat{R}_{X2})/(G_{in} - G_m)$$

Adaptive Control algorithm

Development of a Interactive System for Education in Modelling and Control of Biotehnological Processes (InSEMCoBio)

A MATLAB R2019a

Identification Panel

Current Step	Choose Fermetation Process		Logs	
Select Fermention Process	E. coli MC4110 Fed-batch	•	Step	Record
Select Model and Kinetics			Data	EcoliDataSet.xls
Coad Experimental Data	Choose Model and Kinetics			
Model Parameter Identification	Mass Balance Equations	Kinetic Models		
	✓ dX/dt = mu*X - F/V*X	Monod		
	✓ dS/dt = -1/Yxs*mu*X + (So - S)*F/V	Contoa		
	dO2/dt = 1/Yox*mu*X + Kla*(O2* - O2) - F/V*O2	○ Fujimoto		
	✓ dV/dt = F			
	_			
		Set Model Load Data		
	Choose Algoithm			
Glucopic Acid Process Control	Select an algorithm	•	Selected	MK ALG Results
	Select an algorithm			
	Evolutionary Algorithm			
	Genetic Algorithm			
	EA-GA Hybrid			
			4	>
				Compare Results

🚯 Identification Panel

Identification Panel

- 🗆 🗙

Continous Control

of Gluconic Acid Concentration

$$D = \frac{-\lambda (GA^* - GA_e) + GO_2\theta_5}{GA_e}$$

Acknowledgments This research has been supported by the National Scientific Fund of Bulgaria under the Grant KΠ-06-H3/23 "Interactive System for Education in Modelling and Control of Bioprocesses (InSEMCoBio)".

THANKS FOR YOUR ATTENTION