

Bulgarian Academy of Sciences INSTITUTE OF ROBOTICS България, София 1113, ПК 79, ул. "Акад. Г.Бончев", Бл.2, Тел.(+359 2) 8732 614, (+359 2) 8723 571, Факс: (+359 2) 8703361 Почетен член на "Съвета на Европейската научна и културна общност"

New aspects in the development of the interactive system for education in modelling and control of bioprocesses

Velislava Lyubenova, Prof. DSc,

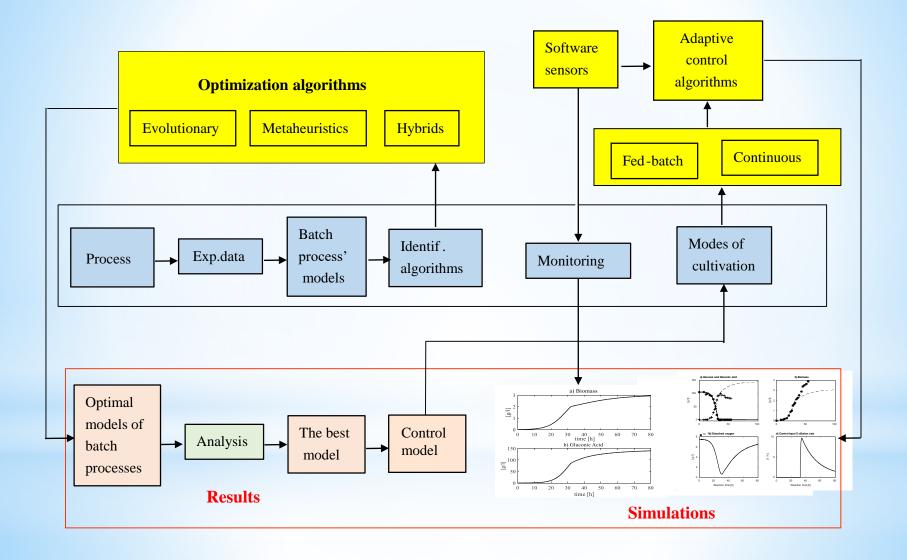
Olympia Roeva, Prof.

Maya Ignatova, Prof.,

Dafina Zoteva, PhD,

Anastasiya Zlatkova, PhD

May 2023 Sibiu, Roumania **1. General scheme of Open source system InSEMCoBio**


2. Evolutionary Algorithm Implemented in InSEMCoBio

3. Multistep Model for the case of extracellular production of bacterial phytase at fed-batch cultivation of *E. coli*

4. Adaptive Biomass Observer in Fed-batch Cultivation of *Escherichia coli* on the Basis of On-line Measurements of Oxygen

5. Adaptive Control of Protein Production Bioprocess with Three Physiological States

Open source system InSEMCoBio

Evolutionary Algorithm Implemented in the Interactive System for Education in Modelling of Bioprocesses

Identification Panel						- 🗆 X	
Current Step	Choose Fermetation Pro	cess		Logs			
Select Fermention Process	E. coli MC4110 Fed-ba	atch	•	Step	Record E. coli MC4110 Fed-batch		
Select Model and Kinetics							
Load Experimental Data	Choose Model and Kinet	tics					
Model Parameter Identification	Mass Balance Equation	ns	Kinetic Models				
	✓ dX/dt = mu*X - F/	∕V*X	Monod				
	✓ dS/dt = -1/Yxs*m	u*X + (So - S)*F/V	🔿 Contoa				
	✓ dO2/dt = 1/Yox*m	nu*X + Kla*(O2* - O2) - F/V*O2	◯ Andrew				
	✓ dV/dt = F						
			Set Model Load Data				
		Identification Panel					
	(Current Step	Choose Fermetation Process			Step	
		Select Model and Kinetics	E. coli MC4110 Fed-batch		•	FP	E. coli MC4110 Fed-batch
		 Select model and kinetics Load Experimental Data 	Chasse Medel and Kinetics			Data	EcoliDataSet.xls
		Model Parameter Identification	Choose Model and Kinetics Mass Balance Equations		Kinetic Models		
			✓ dX/dt = mu*X - F/V*X		Monod		
			✓ dS/dt = -1/Yxs*mu*X + (So - S)*F/V		Contoa		
			dO2/dt = 1/Yox*mu*X + Kla*(O2* - O	2) - F/V*O2	Andrew		
			₩ dV/dt = F		Set Model Load Data		
			Choose Algoithm				
			Evolutionary Algorithm		T	MKA EcoliFB, Monod, EA	Results Best solution: μ = 0.46 ks
la, b. Setting up			Set Algorithm Parameters Max Iter 10 (1, 100) Step 0.5 (0, 5)	Set Problem	Parameters umax 0.45 (0.45, 0.52) ks 0.01 (0.01, 0.05) k1 1.8 (1.8, 2.05)		
nentation process metaheuristic al ameters in InSEM	gorithm				Run Plot Results		

Mathematical Model

The application of the general state space dynamical model to the fed-batch cultivation process of bacteria *E. coli* leads to the following nonlinear differential equation system :

$$\frac{dX}{dt} = \frac{\mu_{\max}S}{k_s + S}X + \frac{F}{V}X$$
$$\frac{dS}{dt} = -\frac{1}{Y_{XS}}\frac{\mu_{\max}S}{k_s + S}X + \frac{F}{V}(S_{in} - S)$$
$$\frac{dV}{dt} = F$$

X- the concentration of the biomass, [g/L],

- S- the concentration of the substrate (glucose), [g/L];
- F- the feeding rate, [L/h];
- V- the volume of the bioreactor, [L];
- S_{in} the initial glucose concentration in the feeding solution, [g/L];
- μ the specific growth rate described by Monod kinetics, [1/h];

 μ - the maximum growth rate, [1/h];

 k_{s} - a saturation constant, [g/L];

 Y_{XS} - a yield coefficient, [-].

Experimental Data and results

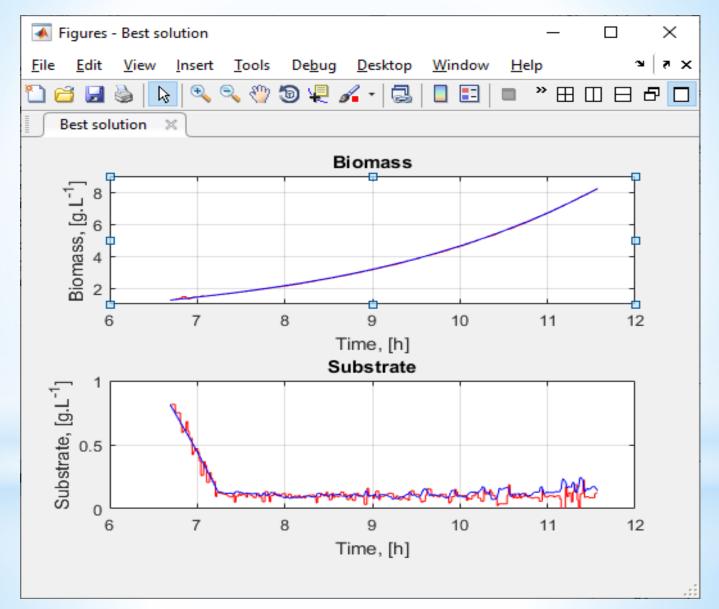


Fig. 1c Visualizing the results of the identification procedure in InSEMCoBio

Oxidative-fermentative growth model on glucose and oxidative on acetate

Oxidative-fermentative growth on glucose

Marker

 $R_{ac} = \frac{dA}{dt} + \frac{F_{in,s}}{W}A$

Oxidative growth on glucose and acetate

$$R_{ac} < 0 \qquad \longrightarrow \qquad \frac{d}{dt} \begin{vmatrix} X \\ S \\ A \\ P \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ -k_1 & 0 \\ 0 & -k_4 \\ k_5 & k_7 \end{vmatrix} \begin{vmatrix} \mu_1 \\ \mu_3 \end{vmatrix} - \frac{F}{V} \begin{vmatrix} X \\ S - S_{in} \\ A \\ P \end{vmatrix} \qquad \qquad \mu_1 = q_{s,crit} / k_1 \\ \mu_3 = q_{ac} / k_4 \\ q_{ac} = q_{ac,max} \left(\frac{A}{K_A + A}\right) \left(\frac{K_{i,A}}{K_{i,A} + A}\right)$$

Fig. 2 Operational model of class bioprocesses

Experimental data of fed-batch phytase production

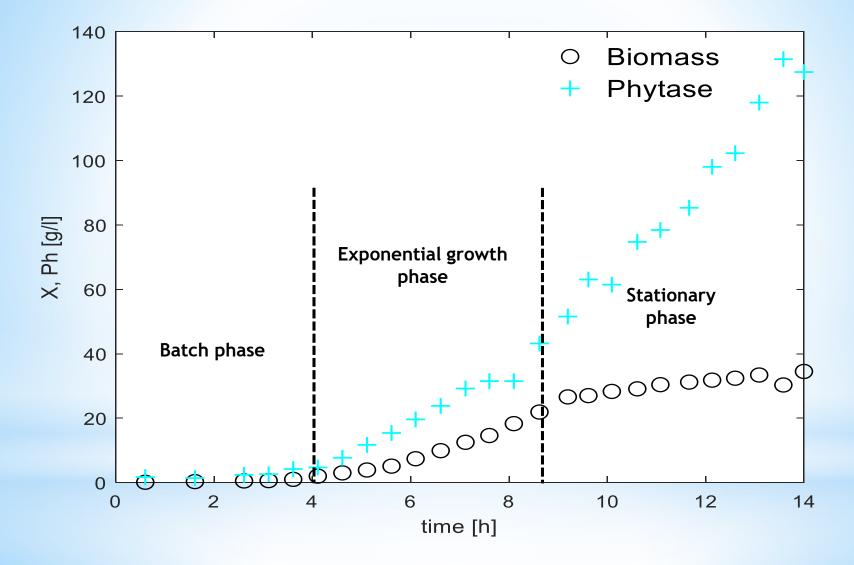


Fig. 3 Experimental data of biomass and phytase concentrations

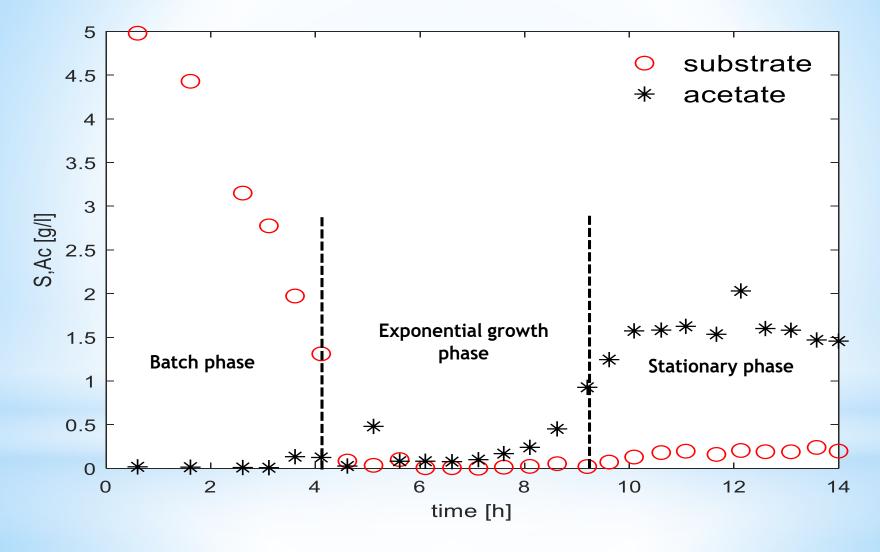


Fig. 4 Experimental data of substrate and acetate concentrations

Results

Table 1. Estimated kinetic parameters

	\mathbf{q}_{smax}	k _s	k _{is}	q _{omax}	k _{os}	k _{io}	q _{acmax}	k _a	k _{ia}	k ₁	k ₂	k ₃	\mathbf{k}_4	\mathbf{k}_5	k ₆	k ₇
l phase	4.19	0.19	5.54	1.1	2.15	0.088	0.082	1.17	-	3.69	0.557	0.19	4.6	1.41	2.66	0.45
2 phase	34.24	0.79	1.83	0.469	2.53	0.197	0.143	0.97	0.246	2.08	2.167	0.05	4.1	2.88	1.52	0.5
3 phase	77.11	0.47	12.3	2.1	3.29	0.134	0.002	0.295	0.228	16.6	11.66	0.42	9.9	39.45	9.53	0.56

Simulation results

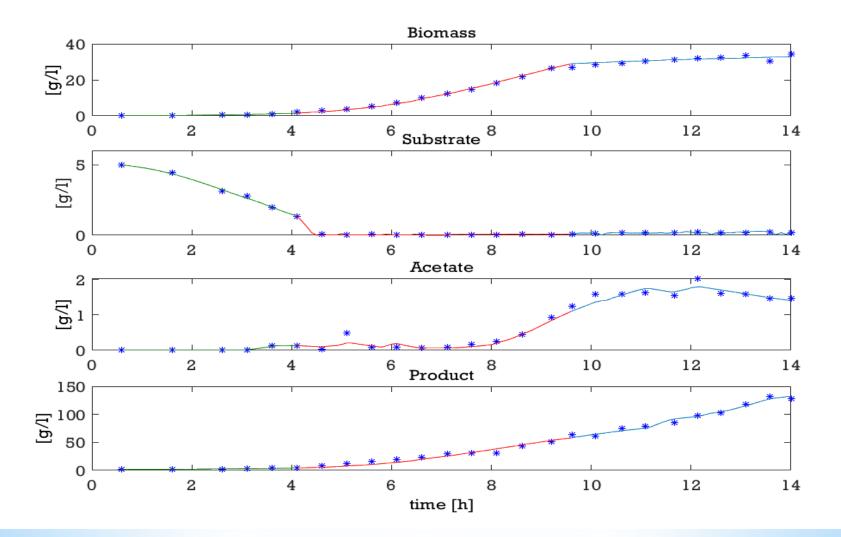


Fig. 5 Simulation results – models values of the biomass, substrate, acetate, and product concentrations are compared with experimental data for the three phases: batch phase – green lines, exponential growth phase – red lines, and stationary phase – blue lines.

Simulation results

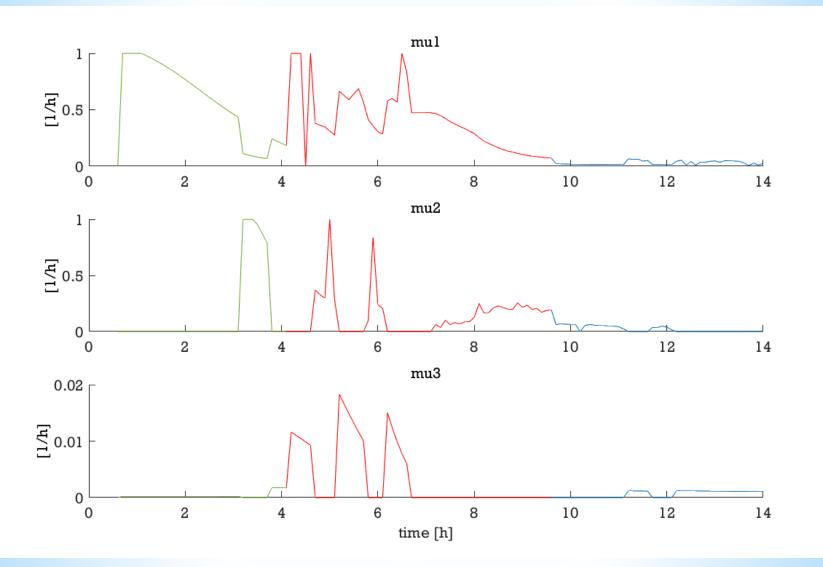
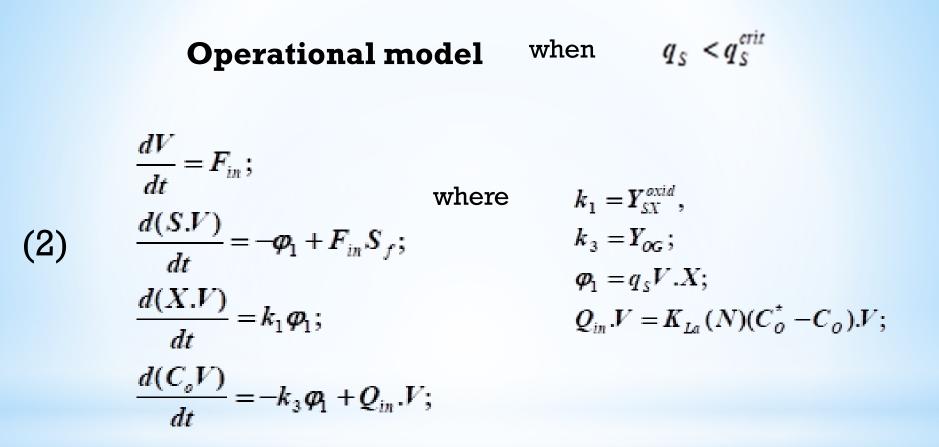


Fig. 6 Simulation results – models values of the three specific growth rates for the three phases: batch phase – green lines, exponential growth phase – red lines, and stationary phase – blue lines.

Biochemical model

$$\begin{aligned} \frac{dV}{dt} &= F_{in} \\ \frac{d(SV)}{dt} &= -q_S(XV) + F_{in}S_f \\ \frac{d(XV)}{dt} &= \mu(XV) \\ \frac{d(AV)}{dt} &= (q_a^p - q_a^c)(XV) \\ \frac{d(C_oV)}{dt} &= -q_o(XV) + K_{La}(N)V.(C_o^* - C_o) \\ \end{aligned}$$

$$\begin{aligned} \text{When } q_S &\leq q_S^{crit} \\ \mu &= q_S Y_{SX}^{oxid} \\ q_a^p &= 0 \\ q_a^c &= \min\left(\frac{q_a^{c.\max}A}{k_a + A}, \frac{q_0^{\max} - q_S Y_{OG}}{Y_{OA}}\right) \\ q_o &= q_S Y_{OG} \end{aligned}$$


$$q_{S} = q_{S}^{\max} \frac{S}{k_{S} + S}$$
(1)
When $q_{S} \ge q_{S}^{crit}$

$$\mu = q_{S}^{crit} Y_{SX}^{oxid} + (q_{S} - q_{S}^{crit}) Y_{SX}^{form}$$

$$q_{a}^{p} = (q_{S} - q_{S}^{crit}) Y_{SA}$$

$$q_{a}^{c} = 0$$

$$q_{O} = q_{S}^{crit} Y_{OG}$$

Operational model when $q_s < q_{s,crit}$

Operational model when $q_s \ge q_{s,crit}$

(3)

$$\frac{dZ_{1}}{dt} = -\frac{1}{k_{3}}Q_{in}N + F_{in}S_{f} \qquad Z_{1} = -\frac{1}{k_{3}}C_{o}N + SN$$
$$\frac{dZ_{2}}{dt} = \frac{k_{1}}{k_{3}}Q_{in}N \qquad Z_{2} = \frac{k_{1}}{k_{3}}C_{o}N + XN$$

Adaptive Biomass Observer for the case $q_{S} < q_{S}^{crit}$

$$\frac{dV}{dt} = F_{in}$$

$$\frac{dZ_1}{dt} = -\frac{1}{k_3}Q_{in}N + F_{in}S_f \qquad (4)$$

$$\frac{dZ_2}{dt} = \frac{k_1}{k_3}Q_{in}N$$

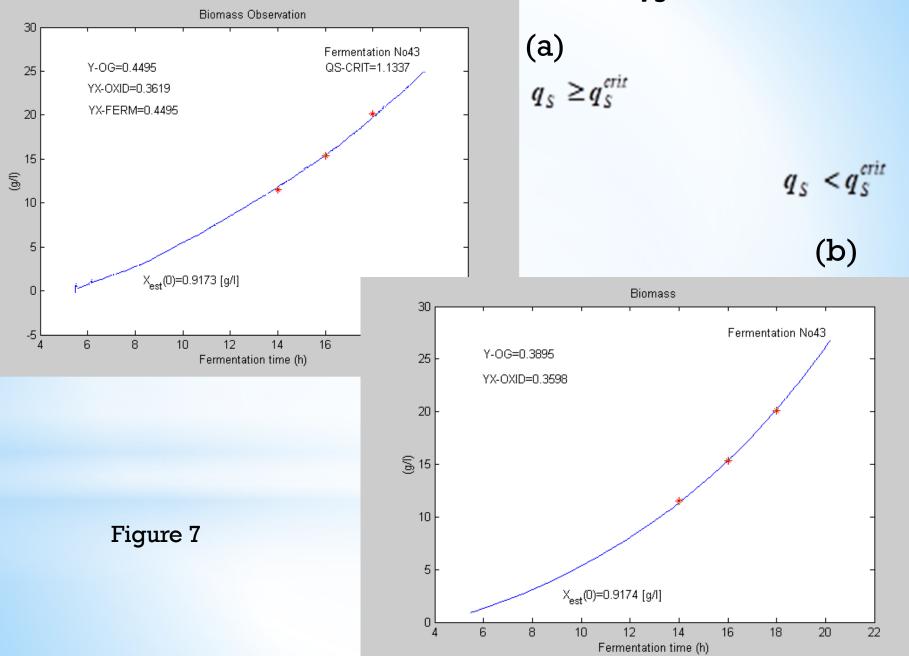
$$\hat{X} = (Z_2 + k_1Z_1)/V$$

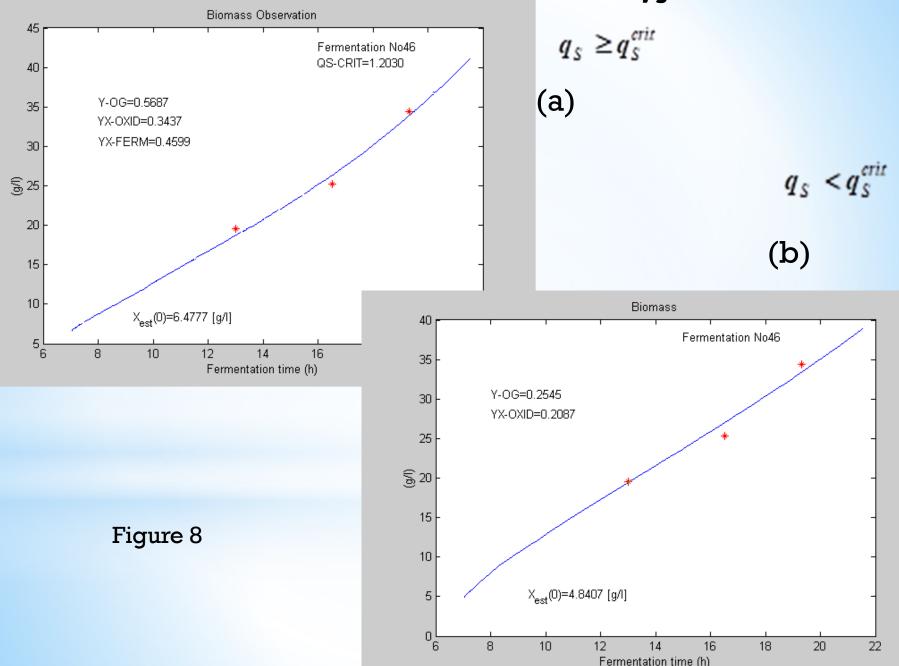
$$Z_{1} = -\frac{1}{k_{3}}C_{o}V - \frac{1}{k_{3}}OURN + SN$$

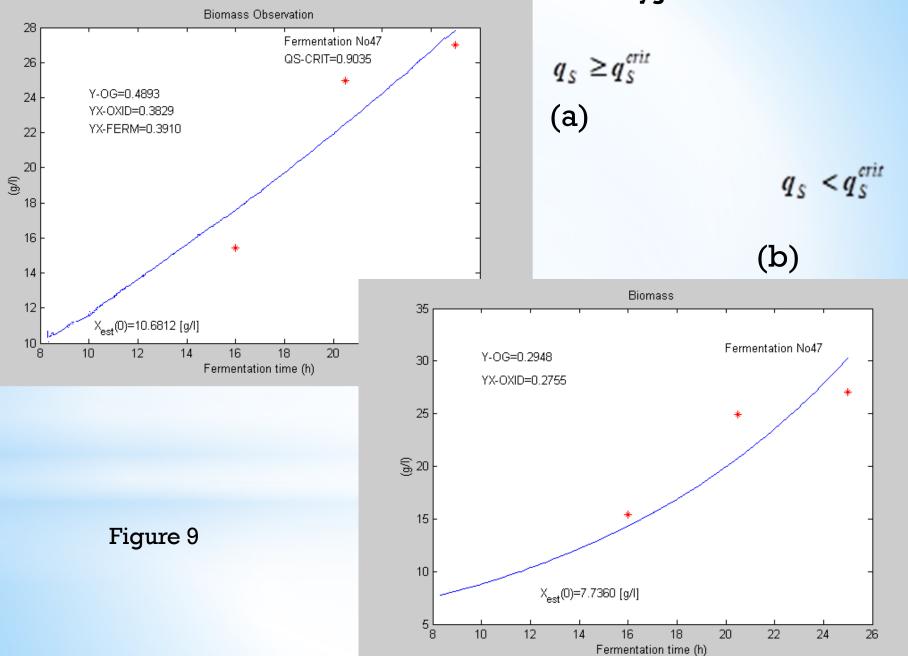
$$\frac{dZ_{1}}{dt} = -\frac{1}{k_{3}}Q_{in}N + F_{in}S_{f}$$

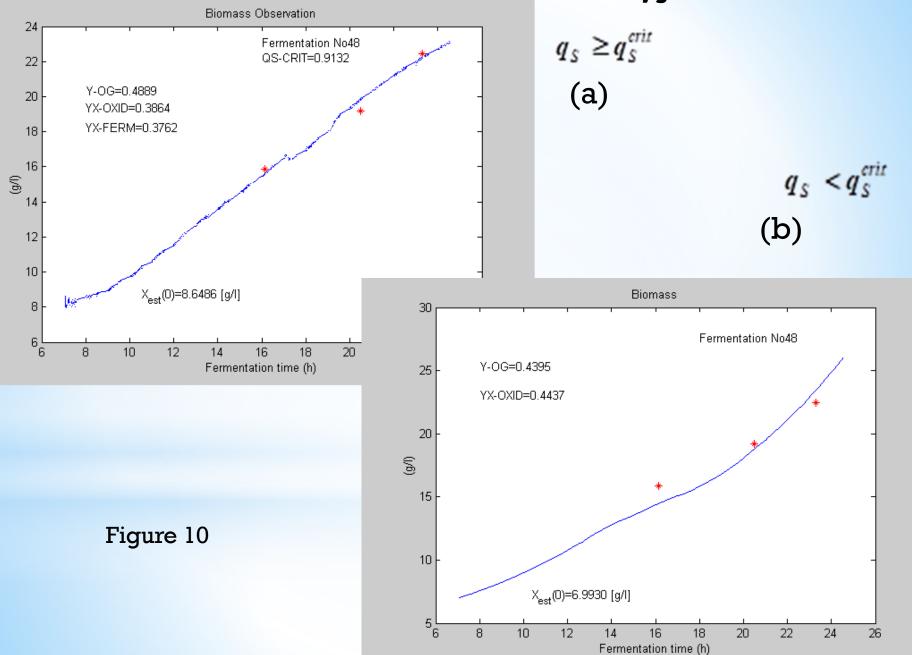
$$Z_{2} = \frac{k_{1}q_{S}^{crit} - k_{1}}{k_{2}k_{3}q_{S}^{crit}}C_{o}V + \frac{k_{1}q_{S}^{crit} - k_{2}}{k_{2}k_{3}q_{S}^{crit}}OURN + XV$$

$$\frac{dZ_{2}}{dt} = \frac{k_{1}q_{S}^{crit} - k_{1}}{k_{2}k_{3}q_{S}^{crit}}Q_{in}N$$

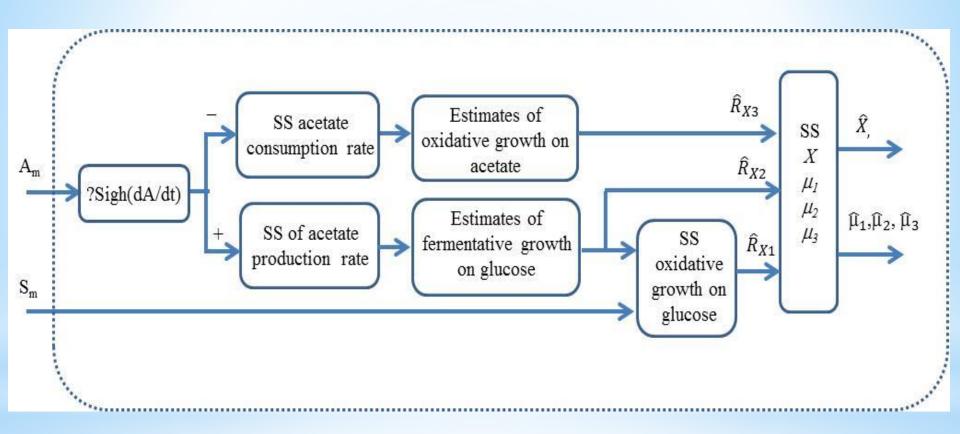

Adaptive Biomass Observer for the case $q_{s} \geq q_{s}^{crit}$

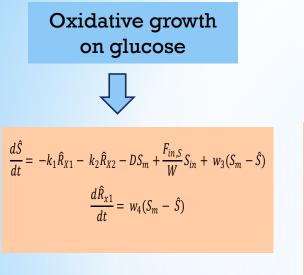

$$\frac{dV}{dt} = F_{in}$$


$$\frac{dZ_1}{dt} = -\frac{1}{k_3}Q_{in}V + F_{in}S_f \qquad (5)$$


$$\frac{dZ_2}{dt} = \frac{k_1q_S^{crit} - k_1}{k_2k_3q_S^{crit}}Q_{in}V$$

$$\hat{X} = \left(Z_2 + \frac{k_1q_S^{crit} - k_1}{k_2q_S^{crit}}(Z_1 + \frac{1}{k_3}OURV) + \frac{k_1q_S^{crit} - k_2}{k_2q_S^{crit}}(Z_1 + \frac{1}{k_3}C_oV)\right)/V$$




Operational process model describing three physiological states

$$\frac{d}{dt} \begin{bmatrix} X \\ S \\ A \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -k_1 & -k_2 \\ 0 & k_3 \end{bmatrix} \begin{bmatrix} \mu_1(t) \\ \mu_2(t) \end{bmatrix} X - D \begin{bmatrix} X \\ S \\ A \end{bmatrix} + \frac{F_{in,s}}{W} \begin{bmatrix} 0 \\ S_{in} \\ 0 \end{bmatrix}$$
(6)
$$\frac{d}{dt} \begin{bmatrix} X \\ S \\ A \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -k_1 & 0 \\ 0 & -k_4 \end{bmatrix} \begin{bmatrix} \mu_1(t) \\ \mu_3(t) \end{bmatrix} X - D \begin{bmatrix} X \\ S \\ A \end{bmatrix} + \frac{F_{in,s}}{W} \begin{bmatrix} 0 \\ S_{in} \\ 0 \end{bmatrix}$$
R_a = $\frac{dA}{dt} + \frac{F_{in,s}}{W} A$

- Ra = 0 oxidative growth on glucose
- Ra > 0 oxidative-fermentative growth on glucose
- Ra < 0 oxidative growth on acetate

Figure 11 Cascade structure of the software sensor for monitoring of three metabolic states

Oxidative-fermentative growth on glucose

$$\frac{d\hat{A}}{dt} = \hat{R}_{ap} - DA_m + w_1(A_m - \hat{A})$$
$$\frac{d\hat{R}_{ap}}{dt} = w_2(A_m - \hat{A})$$

 $\hat{R}_{y_2} = \hat{R}_{z_2}/k_2$

$$\frac{d\hat{S}}{dt} = -k_1\hat{R}_{X1} - k_2\hat{R}_{X2} - DS_m + \frac{F_{in,S}}{W}S_{in} + w_3(S_m - \hat{S}_m)$$
$$\frac{d\hat{R}_{x1}}{dt} = w_4(S_m - \hat{S})$$
$$\frac{d\hat{X}}{dt} = \hat{R}_{X1} + \hat{R}_{X2} - D\hat{X}$$

$$\hat{\mu}_{1} = \hat{R}_{X1}/\hat{X}$$

$$\hat{\mu}_{2} = \hat{R}_{X2}/\hat{X}$$

$$\frac{d\hat{S}}{dt} = \hat{R}_{S} - DS + \frac{F_{in,S}}{W}S_{in} + w_{5}(S_{m} - \hat{S})$$

$$\frac{d\hat{R}_{S}}{dt} = w_{6}(S_{m} - \hat{S})$$

Oxidative growth on acetate

$$\frac{d\hat{A}}{dt} = \hat{R}_{ac} - DA + w_5(A - \hat{A})$$
$$\frac{d\hat{R}_{ac}}{dt} = w_6(A - \hat{A})$$
$$\hat{R}_{X3} = -\hat{R}_{ac}/k_4$$
$$\frac{d\hat{X}}{dt} = \hat{R}_{X1} + \hat{R}_{X2} + \hat{R}_{X3} - D\hat{X}$$
$$\hat{\mu}_3 = \hat{R}_{X3}/\hat{X}$$
$$\hat{\mu}_1 = \hat{R}_{X1}/\hat{X}$$
$$\hat{\mu}_2 = \hat{R}_{X2}/\hat{X}$$

Figure 12 Observer based estimators grouped, depending on the physiological state of the process

dt

Adaptive Control and Results

$$F = \frac{W.(-\lambda(S^* - S_m) + k_1\hat{R}_{X1} + k_2\hat{R}_{X2} + k_4\hat{R}_{X3})}{S_{in} - S_m}$$
(7)

Adaptive Control of Protein Production Bioprocess with Three Physiological States

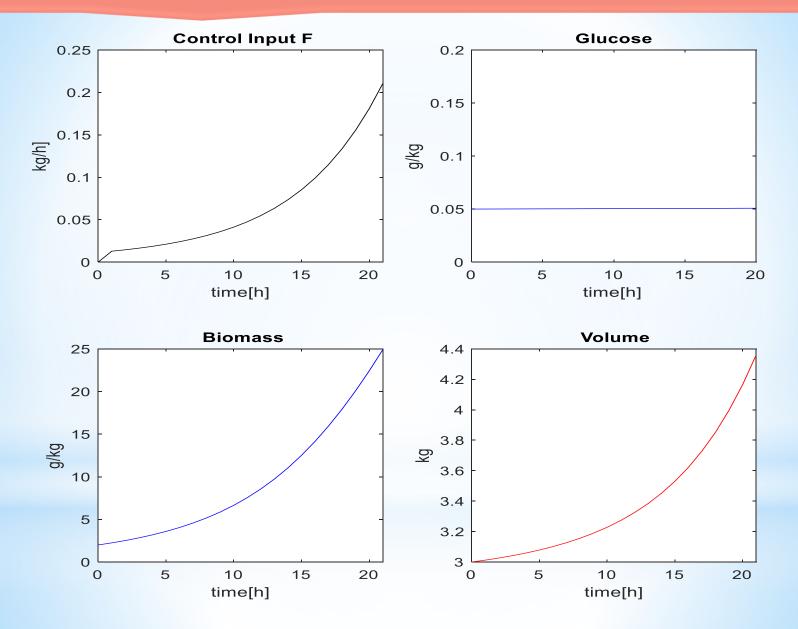


Figure 13 Linearizing control algorithm investigation

Adaptive Control of Protein Production Bioprocess with Three Physiological States

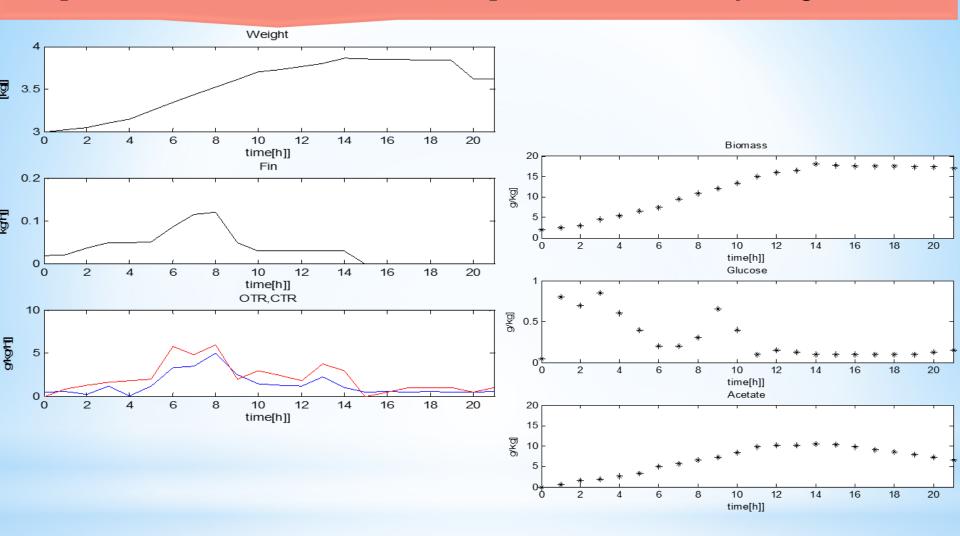


Figure 14 Open loop control for the fermentation according the experimental data

Two modules have been planned initially as part of the interactive system InSEMCoBio.

The module for model parameter identification of the system is currently under development. It will be further expanded with new hybrid metaheuristic algorithms and different models of cultivation processes.

The work on the system InSEMCoBio will continue further by developing the second module for an adaptive control design

Acknowledgements

This research was funded by the National Scientific Fund of Bulgaria, Grant KΠ-06-H32/3 "Interactive System for Education in Modelling and Control of Bioprocesses (InSEMCoBio)".

THANKS FOR YOUR ATTENTION